文件列表:
多能源管理系统的自我完善硬约束条件下安全的强化学习【英文版】.pdf |
下载文档 |
资源简介
>
英文标题:Safe reinforcement learning with self-improving hard constraints for multi-energy management systems中文摘要:本文介绍了两项新的安全强化学习方法,OptLayerPolicy 和 self-improving hard constraints,将约束函数与 RL 形式解耦,以提高初始效用和准确性,提供了在模拟的多能源系统案例研究中实现 92.4%(OptLayerPolicy)的初始效用和 104.9%(GreyOptLayerPolicy)的策略的结果。英文摘要:Safe reinforcement learning (RL) with hard constraint guarantees is apromising optimal control direction for multi-energy management systems. Itonly requires the environment-specific constraint functions itsel
加载中...
本文档仅能预览20页