文件列表:
用于推荐系统中偏好理解的因果分离变分自编码器【英文版】.pdf |
下载文档 |
资源简介
>
英文标题:Causal Disentangled Variational Auto-Encoder for Preference Understanding in Recommendation中文摘要:本文提出了一种新方法 - 因果分离变分自编码器(CaD-VAE),该方法可以从交互数据中学习因果分离表示,以改善推荐模型的鲁棒性、可解释性和可控性,结果表明此方法可以优于现有的方法英文摘要:Recommendation models are typically trained on observational user interactiondata, but the interactions between latent factors in users' decision-makingprocesses lead to complex and entangled data. Disentangling these latentfactors to uncover their underlying representation can improve the robustness,i
加载中...
已阅读到文档的结尾了