文件列表:
利用分解的行动空间实现医疗保健中高效的离线强化学习【英文版】.pdf |
下载文档 |
资源简介
>
英文标题:Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Healthcare中文摘要:本文研究了如何在强化学习的组合行为空间中通过线性 Q 函数分解来更好地处理少见子行动组合的情况,并对该方法进行了理论分析和实验评估,证明了它可以提高数据效率和策略优化的性能。英文摘要:Many reinforcement learning (RL) applications have combinatorial actionspaces, where each action is a composition of sub-actions. A standard RLapproach ignores this inherent factorization structure, resulting in apotential failure to make meaningful inferences about rarely observedsub-action combinations
加载中...
本文档仅能预览20页