×
img

美联储:线性与非线性计量经济学模型与机器学习模型的对比:已实现波动率预测(英文版)

发布者:wx****00
2025-08-13
863 KB 68 页
文件列表:
美联储:线性与非线性计量经济学模型与机器学习模型的对比:已实现波动率预测(英文版).pdf
下载文档

This paper fills an important gap in the volatility forecasting literature by comparing a broad suite of machine learning (ML) methods with both linear and nonlinear econometric models using high-frequency realized volatility (RV) data for the S&P 500. We evaluate ARFIMA, HAR, regime-switching HAR models (THAR, STHAR, MSHAR), and ML methods including Extreme Gradient Boosting, deep feed-forward neural networks, and recurrent networks (BRNN, LSTM, LSTM-A, GRU). Using rolling forecasts from


加载中...

本文档仅能预览20页

继续阅读请下载文档

网友评论>

开通智库会员享超值特权
专享文档
免费下载
免广告
更多特权
立即开通

发布机构

更多>>