美联储:线性与非线性计量经济学模型与机器学习模型的对比:已实现波动率预测(英文版)
美联储:线性与非线性计量经济学模型与机器学习模型的对比:已实现波动率预测(英文版).pdf |
下载文档 |
资源简介
This paper fills an important gap in the volatility forecasting literature by comparing a broad suite of machine learning (ML) methods with both linear and nonlinear econometric models using high-frequency realized volatility (RV) data for the S&P 500. We evaluate ARFIMA, HAR, regime-switching HAR models (THAR, STHAR, MSHAR), and ML methods including Extreme Gradient Boosting, deep feed-forward neural networks, and recurrent networks (BRNN, LSTM, LSTM-A, GRU). Using rolling forecasts from
本文档仅能预览20页