本课程为东南大学周建华老师主讲的工程矩阵理论精品课程教学视频,全套课程共28学时,这部工程矩阵理论教程是一部内容丰富,结构清晰的实用教程。它为大家全面讲述了线性空间与线性映射、内积空间与等距变换、矩阵的相似标准形、Hermite二次型、范数理论、矩阵函数及广义逆矩阵等知识。欢迎大家前来本站观看和学习!
矩阵的本意是子宫、控制中心的母体、孕育生命的地方。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵概念在生产实践中也有许多应用,比如矩阵图法以及保护个人帐号的矩阵卡系统(由深圳网域提出)等等。“矩阵”的本意也常被应用,比如监控系统中负责对前端视频源与控制线切换控制的模拟设备也叫矩阵。
作为解决线性方程的工具,矩阵也有不短的历史。1693年,微积分的发现者之一戈特弗里德·威廉·莱布尼茨建立了行列式论(theory of determinants)。1750年,加布里尔·克拉默其后又定下了克拉默法则。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1848年詹姆斯·约瑟夫·西尔维斯特首先创出matrix一词。研究过矩阵论的著名数学家有凯莱、威廉·卢云·哈密顿、格拉斯曼、弗罗贝尼乌斯和冯·诺伊曼。
在数学名词中,矩阵用来表示统计 数据等方面的各种有关联的数据。这个定义很好地解释了Matrix代码制造世界的数学逻辑基础。成书于西汉末、东汉初的《九章算术》用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但当时并没有现在理解的矩阵概念,虽然它与现在的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。
矩阵的现代概念在19世纪逐渐形成。1801年德国数学家高斯(F.Gauss,1777~1855)把一个线性变换的全部系数作为一个整体。1844年,德国数学家爱森斯坦(F.Eissenstein,1823~1852)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家西尔维斯特(James Joseph Sylvester,18414-1897)首先使用矩阵一词。1858年,英国数学家凯莱(A.Gayley,1821~1895)发表《关于矩阵理论的研究报告》。他首先将矩阵作为一个独立的数学对象加以研究,并在这个主题上首先发表了一系列文章,因而被认为是矩阵论的创立者,他给出了现在通用的一系列定义,如两矩阵相等、零矩阵、单位矩阵、两矩阵的和、一个数与一个矩阵的数量积、两个矩阵的积、矩阵的逆、转置矩阵等。并且凯莱还注意到矩阵的乘法是可结合的,但一般不可交换,且m*n矩阵只能用n*k矩阵去右乘。1854年,法国数学家埃米尔特(C.Hermite,1822~1901)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由德国数学家费罗贝尼乌斯(F.G.Frohenius,1849~1917)发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。