文件列表:
离线强化学习推荐系统因果决策变换器【英文版】.pdf |
下载文档 |
资源简介
>
英文标题:Causal Decision Transformer for Recommender Systems via Offline Reinforcement Learning中文摘要:本文提出了一种基于因果决策转换器的推荐系统,即 CDT4Rec,用于处理离线数据集的强化学习模型。该模型采用了变压器架构,能够处理大规模的离线数据集,并捕捉数据中的长短期依赖关系,以估计动作、状态和奖励之间的因果关系。我们通过对六个真实世界离线数据集和一个在线模拟器的实验,证明了该模型的可行性和优越性。英文摘要:Reinforcement learning-based recommender systems have recently gainedpopularity. However, the design of the reward function, on which the agentrelies to optimize its recommendation policy, is often not straightforward.Exploring the causality unde
加载中...
已阅读到文档的结尾了