文件列表:
扩散模型生成的合成数据提升 ImageNet 分类准确性【英文版】.pdf |
下载文档 |
资源简介
>
英文标题:Synthetic Data from Diffusion Models Improves ImageNet Classification中文摘要:本研究使用大规模的文本到图像扩散模型对分类条件模型进行微调,进而在 ImageNet 分类准确性得分上实现了显著的提升,证明了利用自然图像模型进行生成数据增强的可行性。英文摘要:Deep generative models are becoming increasingly powerful, now generatingdiverse high fidelity photo-realistic samples given text prompts. Have theyreached the point where models of natural images can be used for generativedata augmentation, helping to improve challenging discriminative tasks? We showthat large-scale text-to image
加载中...
已阅读到文档的结尾了