×
img

Spikingformer:基于脉冲的剩余学习用于基于 Transformer 的脉冲神经网络(英文版)

发布者:wx****60
2023-04-25
2 MB 16 页
人工智能(AI)
文件列表:
Spikingformer:基于脉冲的剩余学习用于基于 Transformer 的脉冲神经网络【英文版】.pdf
下载文档
英文标题:Spikingformer: Spike-driven Residual Learning for Transformer-based Spiking Neural Network中文摘要:本研究提出了一种硬件友好的、基于残差设计的、全新的、纯变压器型脉冲神经网络 ——Spikingformer,它能够避免非脉冲计算并使能耗降低 60.34%。Spikingformer 在图像分类任务的表现优于之前的纯 SNN,并且是首次开发出全脉冲驱动的变压器型 SNN。英文摘要:Spiking neural networks (SNNs) offer a promising energy-efficient alternativeto artificial neural networks, due to their event-driven spiking computation.However, state-of-the-art deep SNNs (including Spikformer and SEW ResNet)suffer from non-spike computati

加载中...

已阅读到文档的结尾了

下载文档

网友评论>