文件列表:
解耦对比协同过滤【英文版】.pdf |
下载文档 |
资源简介
>
英文标题:Disentangled Contrastive Collaborative Filtering中文摘要:本篇研究提出了一种基于图神经网络和图对比学习的协作过滤框架,通过自我监督学习进行自适应增强,实现目的的解耦和噪声抑制,将学习到的解耦表示与全局上下文结合,相比于现有的解决方案,具有更好的性能表现。英文摘要:Recent studies show that graph neural networks (GNNs) are prevalent to modelhigh-order relationships for collaborative filtering (CF). Towards thisresearch line, graph contrastive learning (GCL) has exhibited powerfulperformance in addressing the supervision label shortage issue by learningaugmented user and item representations. While m
加载中...
已阅读到文档的结尾了