文件列表:
基于一致性优化的集群联邦学习中的群体共识达成机制【英文版】.pdf |
下载文档 |
资源简介
>
英文标题:FedCBO: Reaching Group Consensus in Clustered Federated Learning through Consensus-based Optimization中文摘要:本论文介绍了一个解决群集联合学习问题的新方法,该方法基于共识优化 (CBO) 中的思想,使用相互作用的粒子系统进行全局优化,经过数学推导得到了该模型的收敛性证明,并通过实验结果证实了 FedCBO 算法的有效性。英文摘要:Federated learning is an important framework in modern machine learning thatseeks to integrate the training of learning models from multiple users, eachuser having their own local data set, in a way that is sensitive to dataprivacy and to communication loss constraints. In clu
加载中...
本文档仅能预览20页