×
img

CausalAPM: NLU 去偏见的通用文字解开(英文版)

发布者:wx****09
2023-05-06
555 KB 10 页
人工智能(AI)
文件列表:
CausalAPM: NLU 去偏见的通用文字解开【英文版】.pdf
下载文档
英文标题:CausalAPM: Generalizable Literal Disentanglement for NLU Debiasing中文摘要:通过因果推断的角度分析数据集偏差的成因,提出了一种通用的语义与文本面貌解耦的框架 CausalAPM,能够极大地提高模型的泛化性能并同时保持其 ID(in-domain)性能。英文摘要:Dataset bias, i.e., the over-reliance on dataset-specific literal heuristics,is getting increasing attention for its detrimental effect on thegeneralization ability of NLU models. Existing works focus on eliminatingdataset bias by down-weighting problematic data in the training process, whichinduce the omission of valid feature i

加载中...

已阅读到文档的结尾了

下载文档

网友评论>