×
img

动态网络表示的动量非负张量因式分解模型(英文版)

发布者:wx****33
2023-05-06
331 KB 5 页
人工智能(AI)
文件列表:
动态网络表示的动量非负张量因式分解模型【英文版】.pdf
下载文档
英文标题:A Momentum-Incorporated Non-Negative Latent Factorization of Tensors Model for Dynamic Network Representation中文摘要:本文提出了一种基于动量梯度下降的非线性潜在张量因子分解模型 (MNNL),可从高维不完整张量 (HDI) 中提取非负潜在因子,改善了传统 LFT 模型的训练问题,提高了预测准确性和收敛速度。英文摘要:A large-scale dynamic network (LDN) is a source of data in many bigdata-related applications due to their large number of entities and large-scaledynamic interactions. They can be modeled as a high-dimensional incomplete(HDI) tensor that contains a wealth of knowledge about time

加载中...

已阅读到文档的结尾了

下载文档

网友评论>