文件列表:
动态网络表示的动量非负张量因式分解模型【英文版】.pdf |
下载文档 |
资源简介
>
英文标题:A Momentum-Incorporated Non-Negative Latent Factorization of Tensors Model for Dynamic Network Representation中文摘要:本文提出了一种基于动量梯度下降的非线性潜在张量因子分解模型 (MNNL),可从高维不完整张量 (HDI) 中提取非负潜在因子,改善了传统 LFT 模型的训练问题,提高了预测准确性和收敛速度。英文摘要:A large-scale dynamic network (LDN) is a source of data in many bigdata-related applications due to their large number of entities and large-scaledynamic interactions. They can be modeled as a high-dimensional incomplete(HDI) tensor that contains a wealth of knowledge about time
加载中...
已阅读到文档的结尾了