文件列表:
插值和 SVM 之间的新等效性:核和结构化特征【英文版】.pdf |
下载文档 |
资源简介
>
英文标题:New Equivalences Between Interpolation and SVMs: Kernels and Structured Features中文摘要:该论文介绍了一种新的和灵活的分析框架,可用于证明任意再生核希尔伯特空间中的支持向量机,并且在独立亚高斯特征和一般有界正交系统家族(例如傅里叶特征)中的特征两个方面都表现出支持向量增殖现象,这些实验未能覆盖。英文摘要:The support vector machine (SVM) is a supervised learning algorithm thatfinds a maximum-margin linear classifier, often after mapping the data to ahigh-dimensional feature space via the kernel trick. Recent work hasdemonstrated that in certain sufficiently overparameterized settings, the SVMdecision
加载中...
本文档仅能预览20页