文件列表:
基于联邦学习的针对性模型投毒攻击防御学习【英文版】.pdf |
下载文档 |
资源简介
>
英文标题:LearnDefend: Learning to Defend against Targeted Model-Poisoning Attacks on Federated Learning中文摘要:本研究提出了使用一小部分的防御数据集来防范边缘用例攻击的观点。该模型 LearnDefend 可以估计客户更新是恶意的概率,并学习一个可以标记清洁或污染例子的被毒害数据检测器模型。同时,该学习防御模型在配对优化时还估计客户端的重要性模型。经实验证明,LearnDefend 可以有效地防御目前最先进的攻击方法,并且对防御数据集中清洁样本的大小和噪音具有较强的鲁棒性。英文摘要:Targeted model poisoning attacks pose a significant threat to federatedlearning systems. Recent studies show that edge-case targeted attacks, whichtarget a small fraction of the input space are nearly imposs
加载中...
已阅读到文档的结尾了