文件列表:
信达证券:电子行业专题研究:AI大模型的长期垄断形成与竞争要素.pdf |
下载文档 |
资源简介
>
本期内容提要:GPT模型基于Transformer,它的本质即全局特征提取器。将词向量、位置向量和分段向量相加,便得到了GPT模型的输入表示。在模型的训练过程中,这些向量将通过多层Transformer结构进行处理,以捕捉词汇之间的复杂关系。词向量(TokeEmbeddings):每个词片段都被映射到一个固定长度的向量,捕捉该词片段的语义信息。这些词向量在模型的预训练过程中学习得到。位置向量(PositionalEmbeddings):GPT使用固定长度的位置向量,用于捕捉词片段在输入序列中的位置信息。这些位置向量与词向量相加,生成包含位置信息的输入表示。分段向量(SegmenEmbeddings):GPT-2不使用分段向量,但在GPT-3及BERT等其他模型中,它们用于区分不同的输入段。模型的训练就是寻找这些向量之间存在的位置关系,以发现语言作为知识的载体,其本身所蕴含何种数学相关性。提升参数量=提升性能、提升泛化能力,长期垄断局面可能形成:从论文研究来看,参数量的提升有助于构建语言预测模型的精确度,同时提高泛化能力。泛化能力的提升意味着一个参数量超级庞大的大模型,其在垂直细分领域的
加载中...
已阅读到文档的结尾了