北大原子核物理教学视频的相关介绍
- 原子核物理是核工程与核技术专业的一门核心课程,这部北京大学的原子核物理教学视频不仅为您全面、系统地阐述了原子核物理学这门学科的基本内容,而且对亚核子物理、天体物理以及核辐射测量等作了简要介绍。
1896年,A.-H.贝可勒尔发现天然放射性,人类首次观测到核变化,通常将它作为核物理学的开端。此后的40多年,主要从事放射性衰变规律和射线性质的研究,并用射线对原子核作初步探讨;还创建了一系列探测方法和测量仪器,一些基本设备如各种计数器、电离室等沿用至今。探测、记录射线并测定其性质,一直是核物理研究和核技术应用的一个中心环节。
放射性衰变的研究证明了一种元素可以通过α衰变或β衰变而变成另一种元素,推翻了元素不可改变的观点;还确立了衰变规律的统计性。统计性是微观世界物质运动的一个根本性质,同经典力学和电磁学所研究的宏观世界物质运动有原则上的区别。衰变中发射的能量很大的射线,特别是α射线,为探索原子结构提供了前所未有的武器。1911年,E.卢瑟福等用α射线轰击各种原子,从射线偏折的分析确立了原子的核式结构,并提出原子结构的行星模型,为原子物理学奠定基础;还首次提出原子核这个词,不久便初步弄清了原子的壳层结构和其电子的运动规律,建立和发展了阐明微观世界物质运动规律的量子力学。
1919年,卢瑟福等人发现用α射线轰击氮核时释放出质子,首次实现人工核反应。此后用射线引起核反应的方法逐渐成为研究原子核的主要手段。初期取得的重大成果是1932年中子的发现和1934年人工放射性核素的制备。原子核是由中子和质子组成的。中子的发现不仅为核结构的研究提供必要的前提,还因为它不带电荷,不受核电荷的排斥,容易进入原子核而引起中子核反应,成为研究原子核的重要手段。30年代中,人们还从对宇宙线的观测发现正电子和“介子”(后称μ子),这些发现是粒子物理学的先河。
20年代后期,开始探讨加速带电粒子的原理。30年代初,静电、直线和回旋等类型的粒子加速器已具雏形,在高压倍加器上实现初步核反应。利用加速器可以获得束流更强、能量更高和种类更多的射线束,大大扩展了核反应的研究,使加速器逐渐成为研究原子核、应用核技术的必要设备。
在现阶段,由于重离子加速技术的发展,已能有效地加速从氢到铀全部元素的离子,能量达到每核子1×109eV,扩充了变革原子核的手段,使重离子核物理研究有全面的发展。强束流的中、高能加速器不仅提供直接加速的离子流,还能提供诸如π介子、Κ介子等次级粒子束,从另一方面扩充了研究原子核的手段,加速了高能核物理的发展。超导加速器将大大缩小加速器的尺寸,降低造价和运转费用,并提高束流的品质。
核物理实验方法和射线探测技术也有了新的发展。微处理机和数据获取与处理系统的改进,影响深远。过去,核过程中同时测定几个参量就很困难,现在,一次记录几十个参量已很普遍。对一些高能重离子核反应,成千个探测器可同时工作,一次记录和处理几千个参量,以便对成千个放出的粒子进行测定和鉴别。另一方面,一些专用的核技术设备都附有自动的数据处理系统,简化了操作,推广了使用。
核物理基础研究的主要目标有两个方面:①通过核现象研究粒子的性质和作用,特别是核子间的相互作用。一些重要问题如中子的电偶极矩、中微子的质量和质子的寿命等都要通过低能核物理实验测定;粒子间相互作用的重要知识也可由中高能核物理提供。②核多体系运动的研究。核多体系是运动形态很丰富的体系,过去主要研究了基态和低激发态的性质以及一些核反应机制,对于高自旋态、高激发态、大变形态以及远离β稳定线核素等特殊运动形态的研究才刚开始,对基态和低激发态的实验知识也不足,远小于多体波函数提供的信息。核运动形态的研究将在相当长的时期内成为核物理基础研究的主要部分。
核技术的广泛应用是本阶段的重要特点。常用的小型加速器已投入工业生产,成千上万台加速器在研究所、大学、工厂和医院中运转,钴60放射源的使用更为普遍;另一方面,几乎没有一个核物理实验室不在从事核技术的应用研究。核技术应用主要有以下几个方面:①为核能源的开发服务,为大型核电站到微型核电池提供更精确的数据和更有效的利用途径。②同位素的应用,这是应用最广泛的核技术,包括同位素示踪、同位素仪表和同位素药剂等。③射线辐照的应用,利用加速器及同位素辐射源,进行辐照加工、食品消毒保鲜、辐照育种、探伤以及放射医疗。④中子束的应用,除利用中子衍射分析物质结构外,还用于辐照、掺杂、测井、探矿及生物效应,如治癌。⑤离子束的应用,大量的加速器是为了提供离子束而设计的,离子注入技术是研究半导体物理和制备半导体器件的重要手段,离子束则是无损、快速、痕量分析的主要手段,特别是质子微米束对表面进行扫描分析,对元素含量的探测极限可达1×10-15~1×10-18克,是其他方法难以比拟的。